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HIGHLIGHTS

•	 The estrous cycle, in which an inflammatory insult occurred, was determinant in the development of acute and 
persistent inflammatory muscle hyperalgesia

•	 The inflammatory insult to the musculoskeletal muscle during the proestrus phase triggered the highest acute muscle 
hyperalgesia

•	 The inflammatory insult to the musculoskeletal muscle during the estrus phase triggered the highest persistent muscle 
hyperalgesia

•	 Regular swimming exercise prevented the acute and persistent muscle hyperalgesia, regardless of the estrous cycle 
phase

Estrous cycle modulates the acute and persistent inflammatory 
muscle hyperalgesia in sedentary but not in exercised female mice
O ciclo estral modula a hiperalgesia muscular inflamatória aguda e persistente em fêmeas sedentárias, 
mas não exercitadas
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ABSTRACT

BACKGROUND AND OBJECTIVES: Persistent pain is a significant public health issue, profoundly impacting quality of life. 
Women experience persistent pain more frequently and with greater intensity than men, which is attributed to sexual hormonal 
fluctuations. This study investigated the influence of the estrous cycle on the development and maintenance of acute and 
persistent inflammatory muscle hyperalgesia in sedentary and exercised female mice.
METHODS: The study analyzed mechanical muscle hyperalgesia in female Swiss mice that underwent a model of acute and 
persistent inflammatory muscle hyperalgesia, during each of the four estrous cycle phases (proestrus, estrus, metestrus or 
diestrus). Swimming exercises were performed before the induction of acute and persistent inflammatory muscle hyperalgesia.
RESULTS: The inflammatory stimulus of carrageenan during the proestrus phase induced the most intense acute muscle 
hyperalgesia. Conversely, in the estrus phase, the inflammatory stimulus induced the most intense persistent muscle 
hyperalgesia. The maintenance of persistent muscle hyperalgesia was not modulated by estrous cycle. Regular swimming 
exercise prevented the acute and persistent muscle hyperalgesia, regardless of the estrous cycle.
CONCLUSION: These findings suggest that the estrous cycle phase during which an inflammatory insult occurs is critical 
for the development of acute inflammatory muscle hyperalgesia and its transition to the persistent phase. This effect was 
observed in sedentary, but not in exercised female mice, suggesting that regular physical activity may provide analgesic 
benefits regardless estrous cycle phase or the associated fluctuations in gender hormones. Further research is necessary to 
elucidate the mechanisms underlying the development of inflammatory muscle pain in females.

KEYWORDS: Estrous cycle, Female mice, Persistent hyperalgesia, Physical exercise, Muscle.

RESUMO

JUSTIFICATIVA E OBJETIVOS: Dor persistente é um problema de saúde pública que impacta significativamente a qualidade 
de vida. Mulheres relatam sentir dores persistentes com maior intensidade e frequência do que homens, o que é atribuído às 
flutuações dos hormônios sexuais. Neste estudo, investigou-se a influência do ciclo estral no desenvolvimento e manutenção 
da hiperalgesia muscular inflamatória aguda e persistente em fêmeas sedentárias e exercitadas.
MÉTODOS: A hiperalgesia muscular mecânica foi avaliada em camundongos fêmeas, da linhagem Swiss, submetidos ao 
modelo de hiperalgesia muscular inflamatória aguda e persistente, durante as quatro fases do ciclo estral (proestro, estro, 
metaestro ou diestro). O exercício foi realizado através da natação previamente à indução da hiperalgesia muscular.
RESULTADOS: Quando o estímulo inflamatório da carragenina ocorre na fase proestro, desencadeia-se a hiperalgesia muscular 
aguda de maior intensidade. Por outro lado, durante a fase estro, o estímulo inflamatório desencadeia a hiperalgesia muscular 
persistente de maior intensidade. A duração da hiperalgesia muscular persistente não é modulada pelos ciclos estrais. 
Exercícios de natação regulares preveniram a hiperalgesia muscular aguda e persistente independentemente do ciclo estral.
CONCLUSÃO: A fase do ciclo estral em que ocorreu o estímulo inflamatório é determinante para o desenvolvimento da 
hiperalgesia muscular aguda e sua transição para a fase persistente. Esse efeito foi observado em fêmeas sedentárias, mas não 
em exercitadas, sugerindo que a atividade física regular pode promover benefícios analgésicos independentemente da fase 
do ciclo estral ou das flutuações hormonais associadas. Pesquisas adicionais são necessárias para elucidar os mecanismos 
subjacentes ao desenvolvimento da hiperalgesia muscular inflamatória em fêmeas.

DESCRITORES: Camundongos fêmeas, Ciclo estral, Exercício físico, Hiperalgesia persistente, Músculo.
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INTRODUCTION

Chronic pain is a significant global health issue with a high 
socioeconomic impact, affecting millions worldwide1-3. It’s more 
common in women, typically increases after puberty, and fluctuates 
throughout menopause4-6. For instance, the prevalence of back 
pain, headache, stomach pain and temporomandibular joint pain 
increases with pubertal development in girls7,8 and musculoskeletal 
pain, headaches or migraines, and vulvovaginal pain have a high 
incidence in the menopause period6. This strongly suggests that 
ovarian hormones have a significant influence on pain sensitivity.

While the impact of ovarian hormones on sensitivity to various 
pain conditions is clear, their role is remarkably complex. The two 
most important ovarian hormones are estrogen and progesterone. 
Several studies agree that fluctuations in estrogen levels significantly 
impact pain perception. These hormonal shifts lead to increased 
pain, while stable hormone levels offer a protective mechanism 
against nociception in females9-12. Progesterone, on the other hand, 
seems to have a pain-reducing effect13-15. Despite this complexity, 
most preclinical studies are performed using male subjects, which 
can lead to inefficient strategies to control chronic pain in women.

Regular physical exercise is a well-known strategy to reduce 
many chronic pain conditions16-18. Moreover, physically inactive 
individuals are more likely to develop chronic pain throughout 
their lives19-21. It was recently demonstrated that regular swimming 
exercise prevents the acute and persistent inflammatory muscle 
hyperalgesia in male mice by a mechanism dependent on 
macrophages22. However, little is known about the preventive 
effect of exercise on transition to chronic muscle hyperalgesia 
in female mice.

Given the significant implications of gender-related differences 
in pain processing, this study investigated the influence of estrous 
cycle phases on the development and maintenance of acute and 
persistent inflammatory muscle hyperalgesia in female mice. 
To this end, the authors used a model of acute and persistent 
inflammatory muscle hyperalgesia to analyze the behavioral 
nociceptive responses within each of the four estrous cycle phases 
in both sedentary and exercised female mice.

METHODS

Ethics and study design

A total of 100 female Swiss mice (Mus musculus), 60 days 
old, provided by Multidisciplinary Center for Biological Research 
(CEMIB) from UNICAMP, were used. The experimental procedure 
was approved by the local institutional Ethics Committee for 
animal’s use (CEUA-UNICAMP, protocol number 5234-1/2019), 
following the guidelines of the National Council for the Control of 
Animal Experimentation (CONCEA, Brazil) research, Brazilian 
Federal Law 11,794/2008 (Arouca Law) and ethics committee of 
the International Association for the Study of Pain in Conscious 
Animals. The animals were kept in plastic cages (five per cage) 
containing wood shavings and plastic tubes, under light/dark 
cycles of 12 h (light switched on at 06:00 a.m.) with water and 

food ad libitum, except during muscle injections, exercise sessions, 
and mechanical muscle hyperalgesia tests. Experimental sessions 
were conducted during the light phase, from 7:00 a.m., in a quiet 
room with a controlled temperature (±23 °C). The researcher 
responsible for assigning the animals to groups was aware of the 
group allocations. All behavioral experiments were conducted 
with women who were blinded to group allocations. After the 
behavioral testing period, all animals were euthanized, following 
the approved ethical protocol.

This study was planned based on previously published 
experiments. A detailed protocol, including the research question, 
key design features, and analysis plan, was prepared before the study.

Determining the stage of the estrous cycle

The estrous cycle was determined indirectly by using the non-
invasive vaginal lavage method23. Initially, to check whether the 
female mice were cycling regularly, 4 days before carrageenan 
injection or exercise, estrous cycle was analyzed. This procedure 
was always performed at 7:30 h a.m. The vaginal cells were flushed 
by introducing 15µL of saline through a pipette and placing a 
few drops of cell suspension on a glass slide for microscopic 
examination. The visual analysis of the cells was used to determine 
the estrous cycle as follows: proestrus (predominance of nucleated 
epithelial cells), estrus (predominance of cornified cells), metestrus 
(predominance of leukocytes and presence of some cornified cells) 
and diestrus (leukocyte predominance)23. Female animals were 
selected for each experiment based on the stage of the estrous 
cycle. Factors that could confound the results were controlled: 
females were grouped by estrous cycle phase and housed in 
separate cages during each experiment.

The model of acute and persistent inflammatory muscle 
hyperalgesia

In this study, a model of persistent inflammatory muscle 
hyperalgesia24 was used, standardized in mice22,25. Immediately 
after determining the estrous cycle, λ – carrageenan (Cg, 100 µg/
muscle) was injected into the belly of the gastrocnemius muscle to 
induce the acute inflammatory muscle hyperalgesia, after 10 days, 
when the nociceptive threshold was at baseline levels, Prostaglandin 
E2 (PGE2; 1 µg/muscle) was injected at the same site to trigger the 
persistent muscle hyperalgesia. The measurement of the hyperalgesic 
threshold was performed at the following time-points (Figure 1): 
1) Immediately before the muscle injection (baseline); 2) after 1h, 
3h and 6h of the injection at day 0; 3) daily until the 10 th day; 
4) immediately before the injection of PGE2 (10 th day); 5) after 
1 h and 4 h of the injection of PGE2 (10 th day); 6) at days 11, 
12 and 1722,25. In control groups, isotonic saline (0.9% NaCl) was 
administered instead of carrageenan. Swimming exercise was 
performed before the first injection, and the estrous cycle was 
determined before carrageenan or PGE2 (Figure 1). All animals 
assigned to each experimental group were included in the analysis.
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each, with daily sessions of 50 minutes. To allow physiological 
adaptation and minimize the risk of fatigue or injury, a protocol 
with progressive increase in intensity was employed23. In the first 
period, mice performed swimming sessions with 4-minute passive 
pauses. In the second period, interval sessions of a 3-minute pause 
were used, and in the last period, mice swam 50 minutes without 
pauses. Mice were withdrawn from the water when inappropriate 
movements, such as floating, climbing, diving and bobbing, were 
observed31. For control groups, mice were maintained in individual 
tanks with shallow water for 10 minutes22. All animals from each 
experimental group were considered in the analysis.

Measurement of serum corticosterone levels

Before blood sampling, animals were habituated for one 
hour in a quiet room. Blood collection was carried out without 
the use of anesthesia or restraint. Blood samples were collected 
24 hours before starting the exercise (baseline) and 24 hours 
after the end of the exercise protocol22. A small cut at the 
distal end of the animal’s tail was made and 25 μL of blood 
was collected using non-heparinized glass capillaries. After 
30 min, the samples were centrifuged, and the supernatant was 
collected and stored at -20◦C until analysis. Corticosterone 
was measured using the Enzyme-Linked ImmunoSorbent Assay 
(ELISA) test, according to the manufacturer’s instructions (Kit 
DetectX - Arbor Assays).

Statistical analysis

According to the Kolmogorov-Smirnov test, all data followed 
a normal Gaussian’s distribution and allowed application of 
parametric tests. Quantitative data were analyzed by one-way 
ANOVA, two-way ANOVA, Mixed-effects Analysis or Student’s 
t test (unpaired). Following one-way and two-way ANOVA, 
post hoc contrasts were performed using the Tukey test. Area 
Under the Curve (AUC) analysis was performed for behavioral 
experiments to evaluate general effects of the interventions in 
acute and chronic hyperalgesia. AUC from acute period was 
considered from day 0 to day 4 after carrageenan injection 

Mechanical muscle nociceptive threshold test

The mechanical muscle nociceptive threshold in mice was 
assayed through the Randall-Selitto digital algesimeter (Insight, 
Brazil)22,25. The device applies linear mechanical pressure to the 
gastrocnemius muscle through a rounded tip with 2 mm to evoke 
the nociceptive threshold of deep tissues26. Three measurements, at 
intervals of 5 minutes each, were performed to get the nociceptive 
threshold22,25. Baseline levels were measured two days after the 
end of the physical exercise period or equivalent to the sedentary 
group22. Mechanical muscle hyperalgesia was calculated as the 
difference (in grams) between the baseline measurement and 
the values obtained at each time point following carrageenan (or 
saline) and PGE2 injections. Mechanical muscle hyperalgesia was 
represented in the y-axis by increasing values22,25,27.

Intramuscular injection, drugs and doses

The drugs or their vehicles were injected into the mice’s 
gastrocnemius muscle using a 30-gauge needle28, connected 
to a polyethylene catheter and a Hamilton syringe (50μL). The 
final volume was 20μl. The following drugs were used: λ – 
carrageenan (100 μg/muscle) and prostaglandin E2 (PGE2, 1μg/
muscle) 22,24,25. All drugs were purchased from Sigma-Aldrich 
(St. Louis, MO, USA), and they were dissolved in isotonic saline 
(0.9% NaCl) to obtain the working solution. The stock solution 
of PGE2 was dissolved in ethanol, according to the datasheet, 
and re-suspended in saline.

Swimming exercise protocol

Swimming was performed as regular physical exercise. The 
water temperature was maintained at 31 ± 1 ºC and all procedures 
were carried out in individual cylindrical tanks with a smooth 
surface22,29. To minimize stress, mice were progressively adapted to 
the liquid environment, with a progressive increase in water depth, 
for 6 days22,30. Before starting the swimming exercise protocol, the 
animals remained at rest for 24 hours. The swimming protocol 
was performed for 15 days, split into three periods of 5 days 

Figure 1. Experimental procedures in the model of persistent muscle hyperalgesia. Carrageenan (Cg) or saline (Sal) was administered into the 
gastrocnemius muscle. Behavioral test was applied from day 0 to 6 after the injection. At the 10th day, PGE2 was administered and behavioral test was 
applied at days 10, 11, 12 and 17. Estrous cycle analysis was determined before Cg or PGE2 injection. Swimming exercise procedures (gray square) were 
performed before Cg/Sal injections, with an interval of 48 h before the baseline behavioral test at day 0. Adapted from a reference study from 202122.
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(AUC Δ, g × 4 days) and AUC from chronic period was 
considered from day 10 to 17 (AUC Δ, g × 10–17 days). The 
sample size for continuous variables was calculated based 
on the estimated population standard deviation and the 
expected mean difference between groups, using the formula 
“n=1+[2C*(s/d)2]”, where “C=(zα+zβ)2”. Parameters were set 
at α=0.05 (two-sided), power = 80%, s=0.2, and d=0.532. Final 
values are reported in the figure legends. These values are 
expressed as means ± standard error of mean (SEM). All data 
were analyzed by GraphPad Prism 7.0 software. The outlier 
calculator tool from GraphPad website was applied to each 
group. For all tests, significance was set at p<0.05.

RESULTS

First, the authors analyzed the development of acute and 
persistent inflammatory muscle hyperalgesia in female mice 
independent of their estrous cycle. Administration of carrageenan 
into gastrocnemius muscle induced acute muscle hyperalgesia 
(n=20, p<0.05, Two Way ANOVA, Tukey post-test Figure 2A, 
AUC, Student t test, Figure 2B) when compared to saline control 
group (n=20). Administration of PGE2 into gastrocnemius muscle 

previously sensitized by carrageenan showed the persistent muscle 
hyperalgesia (n=20, p<0.05, Two Way ANOVA, Tukey post-test 
Figure 2A; AUC, Student T test, Figure 2C) when compared to 
saline control group (n=20).

To investigate the influence of the estrous cycle on the 
development of acute and persistent inflammatory muscle 
hyperalgesia, carrageenan was administered at each of the four-
cycle phases (proestrus, estrus, metestrus or diestrus). The estrous 
cycle phase in which PGE2 was injected was not considered. 
When carrageenan was injected during the proestrus (n=5), 
estrus (n=5), metestrus (n=5) or diestrus (n=5) phases, there 
were development of acute and persistent muscle hyperalgesia 
when compared to the respective saline control groups (p<0.05, 
Mixed-effects Analysis test, Tukey post-test, Figure 3A; AUC, 
One Way ANOVA, Tukey post-test, Figure 3B).

A comparison across the different estrous cycle phases revealed 
that the carrageenan injection during the proestrus phase elicited 
a greater acute muscle hyperalgesia than that observed in the 
other phases (p<0.05, Mixed-effects Analysis test, Tukey post-test, 
Figure 3A; AUC, One Way ANOVA, Tukey post-test, Figure 3C). In 
addition, the carrageenan injection during the estrus phase elicited 
a greater persistent muscle hyperalgesia than that observed in the 

Figure 2. Sexual dimorphism in acute and persistent inflammatory muscle hyperalgesia. (A) Behavioral nociceptive responses at different time points. 
AUC of the acute (B) and persistent (C) muscle hyperalgesia. The symbol “*” indicates differences for the saline control group.
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other phases (p<0.05, Mixed-effects Analysis, Tukey post-test, 
Figure 3A; AUC, One Way ANOVA, Tukey post-test, Figure 3C).

The estrous cycle phase at the time of PGE2 injection 
did not modulate the maintenance of persistent muscle 
hyperalgesia

At this moment an analysis was performed to determine 
whether the estrous cycle phase, at the time of PGE2 injection in 
mice previously sensitized by carrageenan, would modulate the 
maintenance of the persistent muscle hyperalgesia. It was observed 
that the maintenance of this phase was not different among 
the estrous cycle phases (n=5, p>0.05, Mixed-effects Analysis, 
Figure 4A; AUC, One Way ANOVA, Figure 4B).

The estrous cycle did not modulate the regular physical 
exercise-prevented acute and persistent muscle 
hyperalgesia

It was previously shown that regular physical exercise by 
swimming prevents acute and persistent inflammatory muscle 
hyperalgesia in male mice22. After that, the authors analyzed whether 
the estrous cycle would modulate this prevention in female mice. 
First, they observed that swimming was effective in preventing 
acute and persistent muscle hyperalgesia in females (n=20, p<0.05, 
Mixed-effects Analysis, Tukey post-test, Figure 5A; AUC, One 
Way ANOVA, Tukey post-test, Figure 5A). When the different 
estrous cycle phases were compared, there were no differences 

in behavioral responses (n=5, p>0.05, Mixed-effects Analysis, 
Figure 5B; AUC, One Way ANOVA, Figure 5B).

To analyze whether stress modulated the exercise-induced 
prevention of muscle hyperalgesia, the plasma levels of corticosterone 
before the start and 24 h after the end of the swimming protocol were 
quantified. There was no increase in plasma levels of corticosterone in 
exercised female mice (n=16, p>0.05, Two Way ANOVA, Figure 5C).

DISCUSSION

This study demonstrated that the estrous cycle, in which an 
inflammatory insult occurred, is determinant in the development 
of acute inflammatory muscle hyperalgesia and the consequent 
transition to the persistent stage, but not in its maintenance. In 
addition, in animals previously exercised, the estrous cycle, in 
which an inflammatory insult occurred, did not modulate the 
exercise-prevention of muscle hyperalgesia.

The study showed that intramuscular injection of carrageenan 
into the gastrocnemius muscle of female mice induced acute 
and persistent inflammatory muscle hyperalgesia throughout 
all phases of the estrous cycle. Interestingly, this inflammatory 
insult differentially affected the intensity of acute and persistent 
muscle hyperalgesia across various phases of the estrous cycle. 
Specifically, in the proestrus phase, carrageenan induced the 
most intense acute inflammatory muscle hyperalgesia, while in 
the estrus phase, the most intense persistent muscle hyperalgesia. 
These data highlight the impact of the estrous cycle on the 
outcome of acute and persistent muscle hyperalgesia triggered 
by an inflammatory insult.

Figure 3. Estrous cycle modulates both acute and persistent muscle hyperalgesia. (A) Behavioral nociceptive responses in proestrus, estrus, metestrus 
and diestrus phases. AUC of the acute (B) and persistent (C) muscle hyperalgesia. The symbol “*” indicates differences for their respective saline 
control groups, “x” indicates differences for other groups in the acute or persistent phase.
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Usually, women or female rodents show more pain than men 
across several noxious modalities, including mechanical-, electrical-, 
thermal- and chemical-induced pain33. In addition, women are 
more likely than men to report different pain conditions34,35. This 
evidence is, in part, attributed to sexual hormonal fluctuations36-40.

Estrogen41 and progesterone are steroid hormones secreted 
from the ovaries that play important roles in numerous tissues42, 
including in the metabolism of the musculoskeletal system43-45. 
Although there is a robust number of preclinical and clinical studies 
on the role of sex hormones in pain, the results are still unclear. 
There seem to be differences in the influence of female hormones 
based on the stimulus that triggered the pain condition43,46-50. 
Nevertheless, a consensus in the literature suggests a significant 
influence of estrogen fluctuations on pain sensitivity. Specifically, 
variations in hormone levels are associated with an increase in 
pain sensitivity, whereas stable hormonal profiles appear to confer 
a protective effect against nociception in females36-40. Progesterone 
has also been shown to be involved in pain processing, showing a 
protective role against pain39. Interestingly, a clinical pain model 
showed that increased pain associated with high progesterone 
levels was reduced by the increase in estradiol levels, suggesting 
an interaction between both hormones in pain perception51.

It is well known that in female mice, estradiol levels begin to 
increase at metestrus, reaching peak levels during proestrus and 
returning to baseline at estrus. Progesterone secretion also increases 
during metestrus and diestrus, with a decrease afterwards. Then 
the progesterone value rises to reach its second peak towards the 
end of proestrus52,53. Considering these oscillations, it is possible 
to hypothesize that the higher progesterone levels and the lower 
estradiol levels at the end of proestrus phase may be related to the 

highest acute muscle hyperalgesia induced by the inflammatory 
insult in the proestrus phase. In another way, the lower levels of 
estrogens and progesterone may have contributed to the highest 
persistent muscle hyperalgesia induced by the inflammatory insult 
in the estrus phase. Finally, the protective role of the increasing 
levels of estrogens and progesterone may have contributed to 
the lower intensity of persistent muscle hyperalgesia induced by 
the inflammatory insult in the proestrus and metestrus phases, 
respectively. The mechanisms underlying the protective role of 
estrogen in inflammatory muscle hyperalgesia are still under 
investigation. However, evidence shows that estrogens downregulate 
proinflammatory cytokines54-57, interact with adrenergic and 
serotoninergic systems58, and inhibit the signaling of NFkappaB59.

It was previously shown that regular swimming prevents 
the onset of acute inflammatory muscle hyperalgesia and its 
transition to the persistent stage in male mice22. Here, the authors 
demonstrated that females exhibit similar exercise-induced 
behavioral responses. Interestingly, the phase of the estrous cycle 
during the inflammatory insult did not affect the exercise-induced 
prevention of acute or persistent muscle hyperalgesia. Regular 
physical exercise of low or moderate intensity modulates the 
peripheral and central neuroimmune systems related to signaling 
pain pathways60 Therefore, they are efficient non-drug strategies 
for the treatment and prevention of chronic painful conditions61,62. 
Although the study has not evaluated the mechanisms underlying 
the exercise-prevention of acute and persistent muscle hyperalgesia 
in female mice, it showed that the exercise protocol is also effective 
in females, independent of the estrous cycle phase.

A limitation of this study is that sex hormones were not directly 
measured; instead, estrous cycle phases were determined using 

Figure 4 - Estrous cycle did not modulate persistent muscle hyperalgesia. (A) Behavioral nociceptive responses in proestrus, estrus, metestrus 
and diestrus phases. B) AUC of the persistent muscle hyperalgesia. The symbol “*” indicates differences for their respective saline control groups.
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the non-invasive vaginal lavage method. Although this technique 
does not provide exact hormone levels, it is widely used and 
reliable for identifying cycle stages. Therefore, the interpretations 
regarding hormonal influences were based on indirect evidence.

CONCLUSION

The estrous cycle phase during which an inflammatory insult 
occurs is critical for the development of acute inflammatory muscle 

hyperalgesia and its transition to the persistent phase. Therefore, 
they should be taken into account in the clinical management of 
such conditions. Although changes in sex hormones throughout 
the cycle are known to influence pain sensitivity, the present 
findings suggest that well-designed exercise interventions can 
effectively prevent the progression from acute to chronic muscle 
pain. These findings underscore the potential of integrating 
individualized exercise programs into pain management 
strategies for women, suggesting that regular physical activity 

Figure 5 - Physical exercise-induced prevention of acute and persistent muscle hyperalgesia is independent of the estrous cycle. Behavioral 
nociceptive responses independent of the estrous cycle. (A) and in different phases of estrous cycle (B). Analysis of corticosterone levels (C). The symbol 
“*” indicates differences for their respective saline control groups and “°” indicates differences for the sedentary Cg/PGE2 group.
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may provide analgesic benefits regardless menstrual cycle phase 
or the associated fluctuations in sex hormones.
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