Brazilian Journal of Pain
https://brjp.org.br/article/doi/10.5935/2595-0118.20200002
Brazilian Journal of Pain
Artigo Original

The influence of the cannabinoid receptor CB1 on the periaqueductal gray in mice treated with photobiomodulation after chronic constriction injury of the sciatic nerve: a placebo-controlled trial

Influência do receptor canabinóide CB1 na substância cinzenta periaquedutal em camundongos tratados por fotobiomodulação após constrição crônica do nervo ciático: ensaio controlado por placebo

Gabriela Xavier Santos; Giovane Galdino de-Souza; Suélen Santos Alves; Gabriela Nagai Ocamoto; Nivaldo Antônio Parizotto; Luciana Maria dos-Reis

Downloads: 0
Views: 566

Abstract

BACKGROUND AND OBJECTIVES: Studies have demonstrated that the cannabinoid CB1 receptor is involved in the modulation of pain, mainly by activating the descending pain control pathway. However, the role of photobiomodulation in this process is not well elucidated. Thus, the present study aimed to investigate the involvement of the CB1 receptor in the supraspinal photobiomodulation-induced antinociception.

METHODS: Male albino swiss mice were submitted to chronic constriction injury and treated with photobiomodulation. To evaluate the supraspinal involvement of the CB1 receptor in the photobiomodulation-induced antinociception, the cannabinoid CB1 receptor antagonist AM251 (0.1µg/vol 0.2µL) was injected 5 minutes before the photobiomodulation treatment. The photobiomodulation treatment was performed on the fifth day after the stereotactic surgery and chronic constriction injury at a dose of 50J/cm2 in acute condition. The hot plate and von Frey monofilaments tests were performed to evaluate the thermal and mechanical pain sensitivity, respectively.

RESULTS: The thermal and mechanical nociceptive threshold was higher in mice with chronic constriction injury, injected with saline and treated with photobiomodulation at the dose of 50J/cm2 in both the hot plate (p<0.001) and von Frey (p>0.001) tests. These antinociceptive effects were not detected in mice with chronic constriction injury pre-treated with AM251.

CONCLUSION: The present study suggests that CB1 receptors located in Supraspinal structures, participate in the control of neuropathic pain following photobiomodulation treatment in animals undergoing chronic constriction injury.

Keywords

Cannabinoid, Lasers, Pain, Receptors, Rehabilitation

Resumo

JUSTIFICATIVA E OBJETIVOS: Estudos demonstraram que o receptor canabinóide CB1 está envolvido na modulação da dor, principalmente pela ativação da via descendente de controle da dor, porém o papel da fotobiomodulação nesse processo não é bem elucidado. Assim, o presente estudo teve como objetivo investigar o envolvimento do receptor CB1 na antinocicepção induzida pela fotobiomodulação a nível supraespinhal.

MÉTODOS: Camundongos machos suíço albinos foram submetidos à lesão por constrição crônica e tratados com fotobiomodulação. Para avaliar o envolvimento supraespinhal do receptor CB1 na antinocicepção induzida por fotobiomodulação foi injetado o antagonista do receptor canabinóide CB1, AM251 (0,1µg/vol 0,2µL) 5 minutos antes do tratamento com fotobiomodulação. O tratamento de fotobiomodulação foi realizado no quinto dia após cirurgia estereotática e lesão por constrição crônica, na dose de 50J/cm2 em estado agudo. Os testes de placa quente e monofilamentos de von Frey foram realizados para avaliar a sensibilidade térmica e mecânica à dor, respectivamente.

RESULTADOS: O limiar térmico e mecânico nociceptivo foi maior nos camundongos com lesão por constrição crônica, injetados com solução salina e tratados com fotobiomodulação na dose de 50J/cm2 nos testes de placa quente (p<0,001) e von Frey (p>0,001). Esses efeitos antinociceptivos não foram detectados em camundongos com lesão por constrição crônica tratados com AM251.

CONCLUSÃO: O presente estudo sugere que os receptores CB1 localizados nas estruturas supraespinhais participam do controle da dor neuropática, após tratamento com fotobiomodulação em animais submetidos à lesão por constrição crônica.

Palavras-chave

Canabinóide, Dor, Lasers, Reabilitação, Receptores

Referências

Haanpää M, Attal N, Backonja M, Baron R, Bennett M, Bouhassira D, Cruccu G. NeuPSIG guidelines on neuropathic pain assessment. Pain. 2011;152(1):14-27.

Dickenson A, Suzuki R. Targets in pain and analgesia. The neurobiology of pain. 2005.

Nishikawa N, Nomoto M. Management of neuropathic pain. J Gen Fam Med. 2017;18(2):56-60.

Inoue S, Taguchi T, Yamashita T, Nakamura M, Ushida T. The prevalence and impact of chronic neuropathic pain on daily and social life a nationwide study in a Japanese population. Eur J Pain. 2017;21(4):727-37.

Benbouzid M, Pallage V, Rajalu M, Waltisperger E, Doridot S, Poisbeau P. Sciatic nerve cuffing in mice a model of sustained neuropathic pain. Eur J Pain. 2008;12(5):591-9.

Suzuki R, Rahaman W, Hunt SP, Dickenson AH. Descending facilitatory control of mechanically evoked responses is enhanced in deep dorsal horn neurons following peripheral nerve injury. Brain Res. 2004;1019(1-2):68-76.

Vanegas H, Schaible HG. Descending control of persistent pain inhibitory or facilitatory?. Brain Res Rev. 2004;46(3):295-309.

Guindon J, Lai Y, Takacs SM, Bradshaw HB, Hohmann AG. Alterations in endocannabinoid tone following chemotherapy-induced peripheral neuropathy effects of endocannabinoid deactivation inhibitors targeting fatty-acid amide hydrolase and monoacylglycerol lipase in comparison to reference analgesics following cisplatin treatment. Pharmacol Res. 2013;67(1):94-109.

Maldonado R, Baños JE, Cabañero D. The endocannabinoid system and neuropathic pain. Pain. 2016;157(Suppl 1):S23-32.

Guindon J, Hohmann AG. The endocannabinoid system and pain. CNS Neurol Disord Drug Targets. 2009;8(6):403-21.

Ulugöl A. The endocannabinoid system as a potential therapeutic target for pain modulation. Balkan Med J. 2014;31(2):115-20.

Cruccu G, Aziz TZ, Garcia-Larrea L, Hansson P, Jensen TS, Lefaucheur JP. EFNS guidelines on neurostimulation therapy for neuropathic pain. Eur J Neurol. 2007;14(9):952-70.

de Andrade AL, Bossini PS, Parizotto NA. Use of low level laser therapy to control neuropathic pain a systematic review. J Photochem Photobiol B. 2016;164:38-42.

Ali-Asgarzadeh A, Agha-Mohammadi D, Movasaghi R, Shahsavari P. Effect of low-intensity laser on lower limb neuropathic pain in patients with diabetes mellitus. JAP. 2011;2(2):48-60.

Khamseh ME, Kazemikho N, Aghili R, Forough B, Lajevardi M, Hashem Dabaghian F. Diabetic distal symmetric polyneuropathy effect of low-intensity laser therapy. Lasers Med Sci. 2011;26(6):831-5.

Ribas ES, Paiva WS, Pinto NC, Yeng LT, Okada M, Fonoff ET. Use of low intensity laser treatment in neuropathic pain refractory to clinical treatment in amputation stumps. Int J Gen Med. 2012;5:739-42.

Gustafsson H, Flood K, Berge OG, Brodin E, Olgart L, Stiller CO. Gabapentin reverses mechanical allodynia induced by sciatic nerve ischemia and formalin induced nociception in mice. Exp Neurol. 2003;182(2):427-34.

Bertolini GR, Artifon EL, Silva TS, Cunha DM, Vigo PR. Low-level laser therapy, at 830 nm, for pain reduction in experimental model of rats with sciatica. Arq Neuropsiquiatr. 2011;69(2-B):356-9.

Chow RT, David MA, Armati PJ. 830 nm laser irradiation induces varicosity formation, reduces mitochondrial membrane potential and blocks fast axonal flow in small and medium diameter rat dorsal root ganglion neurons implications for the analgesic effects of 830 nm laser. J Peripher Nerv Syst. 2007;12(1):28-39.

Alves AC, Vieira R, Leal-Junior E, dos Santos S, Ligeiro AP, Albertini R. Effect of low-level laser therapy on the expression of inflammatory mediators and on neutrophils and macrophages in acute joint inflammation. Arthritis Res Ther. 2013;15(5):R116.

Franklin KB, Paxinos G. The mouse brain in stereotaxic coordinates. 2008.

Bennett GJ, Xie YK. A peripheral mononeuropathiy in rat that produces disorders of pain sensation like those seen in man. Pain. 1988;33(1):87-107.

Nunes-de-Souza RL, Canto-de-Souza A. Anxiety-induced antinociception in mice effects of systemic and intra-amygdala administration of 8-OH-DPAT and midazolam. Psychopharmacology. 2000;150(3):300-10.

de Andrade ALM, Bossini PS. Effect of photobiomodulation therapy (808 nm) in the control of neuropathic pain in mice. Lasers Med Sci. 2017;32(4):865-72.

Hsieh YL, Chou LW, Chang PL, Yang CC, Kao MJ, Hong CZ. Low-level laser therapy alleviates neuropathic pain and promotes function recovery in rats with chronic constriction injury: possible involvements in hypoxia-inducible factor 1a (HIF-1a). J Comp Neurol. 2012;520(13):2903-16.

Oliveira ME, Santos FM, Bonifácio RP, Freitas MF, Martins DO, Chacur M. Low level laser therapy alters satellite glial cell expression and reverses nociceptive behavior in rats with neuropathic pain. Photochem Photobiol Sci. 2017;16(4):547-54.

Belchior AC, dos Reis FA, Nicolau RA, Silva IS, Perreira DM. Influence of laser (660 nm) on functional recovery of the sciatic nerve in rats following crushing lesion. Lasers Med Sci. 2009;24(6):893-9.

Barbosa RI, Marcolino AM. Comparative effects of wavelengths of low-power laser in regeneration of sciatic nerve in rats following crushing lesion. Lasers Med Sci. 2010;25(3):423-30.

dos Reis FA, Belchior AC. Effect of laser therapy (660 nm) on recovery of the sciatic nerve in rats after injury through neurotmesis followed by epineural anastomosis. Lasers Med Sci. 2009;24(5):741-7.

Ziago EK, Fazan VP, Iyomasa MM, Sousa LG, Yamauchi PY, da Silva EA. Analysis of the variation in low-level laser energy density on the crushed sciatic nerves of rats A morphological, quantitative, and morphometric study. Lasers Med. Sci. 2017;32(2):369-78.

Shen CC, Yang YC, Liu BS. Large-area irradiated low-level laser effect in a biodegradable nerve guide conduit on neural regeneration of peripheral nerve injury in rats. Injury. 2011;42(8):803-13.

Wang CZ, Chen YJ, Wang YH, Yeh ML, Huang MH, Ho ML. Low-level laser irradiation improves functional recovery and nerve regeneration in sciatic nerve crush rat injury model. PLoS One. 2014;9(8).

Rosso MPO, Buchaim DV, Kawano N, Furlanette G, Pomini KT, Buchaim RL. Photobiomodulation therapy (PBMT) in peripheral nerve regeneration: a systematic review. Bioengineering. 2018;5(2).

Paszcuk AF, Dutra RC, da Silva KA, Quintão NL, Campos MM, Calixto JB. Cannabinoid agonists inhibit neuropathic pain induced by brachial plexus avulsion in mice by affecting glial cells and MAP kinases. PLoS One. 2011;6(9).

Martin WJ, Lai NK, Patrick SL, Tsou K, Walker JM. Antinociceptive actions of cannabinoids following intraventricular administration in rats. Brain Res. 1993;629(2):300-4.

Mascarenhas DC, Gomes KS, Sorregotti T, Nunes-de-Souza RL. Blockade of cannabinoid CB1 receptors in the dorsal periaqueductal gray unmasks the antinociceptive effect of local injections of anandamide in mice. Front Pharmacol. 2017;8:695.


Submetido em:
18/09/2018

Aceito em:
09/12/2019

5eed06ee0e88258f45bf3a99 brjp Articles

BrJP

Share this page
Page Sections