Brazilian Journal of Pain
https://brjp.org.br/article/doi/10.5935/2595-0118.20210018
Brazilian Journal of Pain
Original Article

Impact of sex and environmental conditions on the responses to pain in zebrafish

Impacto do sexo e das condições ambientais nas respostas do peixe-zebra à dor

Gerlânia Oliveira Leite; Sacha Aubrey Alves Rodrigues Santos; Antônia Deyse de Castro Ribeiro; Francisca Magnólia Diógenes Holanda Bezerra; Adriana Rolim Campos

Downloads: 0
Views: 28

Abstract

BACKGROUND AND OBJECTIVES: Adult zebrafish (Danio rerio) has been proposed as a low-cost and simple alternative to the use of rodents in laboratory research on novel compounds with antinociceptive potential. This study aimed to assess whether there is an influence of animal sex and the test environment on the orofacial nociceptive behavior of the adult zebrafish.

METHODS: First, cinnamaldehyde, menthol, capsaicin, acidic saline, or glutamate was applied into the lips of the adult male or female zebrafish. Naive groups were included as control. The orofacial nociception was quantified in terms of locomotor activity. In other series of experiments, it was evaluated whether the apparatus, acclimatization, period of test, temperature of the water and color of the open field would alter the nociceptive response to cinnamaldehyde.

RESULTS: The nociceptive behavior did not depend on the sex of the animal, apparatus, time the test was performed or the color of the open field. However, acclimatization promoted nociceptive behavior in naive animals and did not alter the nociceptive response to cinnamaldehyde (p<0.01 vs acclimatized naive). The nociception behavior was presented only when the test was performed at a temperature of 26ºC (p<0.01 vs naive).

CONCLUSION: The results suggest the need to control the environment and water temperature as an environmental source of variation during the nociceptive behavior test of the adult zebrafish.

Keywords

Environment, Pain, Nociception, Zebrafish

Resumo

JUSTIFICATIVA E OBJETIVOS: O peixe-zebra adulto (Danio rerio) tem sido proposto como uma alternativa simples e de baixo custo ao uso de roedores em pesquisas laboratoriais de novos compostos com potencial antinociceptivo. Este estudo teve como objetivo avaliar se há influência do sexo do animal e do ambiente de teste no comportamento nociceptivo orofacial do peixe-zebra adulto.

MÉTODOS: Inicialmente, cinamaldeído, mentol, capsaicina, solução salina ácida ou glutamato foi aplicada nos lábios do peixe-zebra adulto masculino ou feminino. Grupos naive foram incluídos como controle. A nocicepção orofacial foi quantificada em termos de atividade locomotora. Em outra série de experimentos, foi avaliado se o aparato, aclimatação, período de teste, temperatura da água e cor do campo aberto alterariam a resposta nociceptiva ao cinamaldeído.

RESULTADOS: O comportamento nociceptivo não dependeu do sexo do animal, do equipamento de teste, do horário em que o teste foi realizado ou da cor do campo aberto. No entanto, a aclimatação promoveu comportamento nociceptivo em animais naive e não alterou promoveu comportamento nociceptivo em animais naive e não alterou a resposta nociceptiva ao cinamaldeído (p<0,01 vs naive aclimatado). O comportamento nociceptivo foi verificado apenas quando o teste foi executado a uma temperatura de 26ºC (p<0,01 vs naive).

CONCLUSÃO: Os resultados sugerem a necessidade de controlar o ambiente e a temperatura da água como fonte de variação ambiental durante o teste de comportamento nociceptivo do peixe-zebra adulto.

Palavras-chave

Dor, Meio ambiente, Nocicepção, Peixe-Zebra

References

Mogil JS, Davis KD, Derbyshire SW. The necessity of animal models in pain research. Pain. 2010;151(1):12-7.

Woolf CJ. What is this thing called pain?. J Clin Invest. 2010;120(11):3742-4.

Stevenson GW, Bilsky EJ, Negus SS. Targeting pain-suppressed behaviors in preclinical assays of pain and analgesia: effects of morphine on acetic acid-suppressed feeding in C57BL/6J mice. J Pain. 2006;7(6):408-16.

Meotti FC, Coelho Idos S, Santos AR. The nociception induced by glutamate in mice is potentiated by protons released into the solution. J Pain. 2010;11(6):570-8.

Sneddon LU, Braithwaite VA, Gentle MJ. Novel object test: examining nociception and fear in the rainbow trout. J Pain. 2003;4(8):431-40.

Du X, Yuan B, Wang J, Zhang X, Tian L, Zhang T. E: ect of heat-reinforcing needling on serum metabolite profiles in rheumatoid arthritis rabbits with cold syndrome. Zhongguo Zhen Jiu. 2017;37(9):977-83.

Magalhães FEA, de Sousa CAPB, Santos SAAR, Meneses RB, Batista FLA, Abreu AO. Adult zebrafish (Danio rerio): an alternative behavioral model of formalin-induced nociception. Zebrafish. 2017;14(5):422-9.

Crusio WE. Genetic dissection of mouse explaratory behavior. Behav Brain Res. 2001;125(1-2):127-32.

Menezes FP, Da Silva RS. The Influence of temperature on adult zebrafish sensitivity to pentylenetetrazole. Epilepsy Res. 2017;135:14-8.

MacPhail RC, Brooks J, Hunter DL, Padnos B, Irons TD, Padilla S. Locomotion in larval zebrafish: influence of time of day, lighting and ethanol. Neurotoxicology. 2008;30(1):52-8.

Genario R, de Abreu MS, Giacomini ACVV, Demin K, Kalueff AV. Sex differences in behavior and neuropharmacology of zebrafish. Eur J Neurosci. 2020;52(1):2586-603.

Magalhães FEA, Batista FLA, Lima LMG, Abrante IA, de Araújo JIF, Santos SAAR. Adult zebrafish (Danio rerio) as a model for the study of corneal antinociceptive Compounds. Zebrafish. 2018;15(6):566-74.

Dewberry S, Taylor C, Yessick L, Totsch S, Watts S, Sorge R. Development and validation of a partially automated model of inflammatory chronic pain in zebrafish. J Pain. 2016;17(4):S50.

Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell. 2006;124(6):1269-82.

Nascimento JET, Morais SM, Lisboa DS, Oliveira Sousa M, Santos SAAR, Magalhães FEA. The orofacial antinociceptive effect of Kaempferol-3-O-rutinoside, isolated from the plant Ouratea fieldingiana, on adult zebrafish (Danio rerio). Biomed Pharmacother. 2018;107:1030-6.

Santos ALE, Leite GO, Carneiro RF, Roma RR, Santos VF, Santos MHC. Purification and biophysical characterization of a mannose/N-acetyl-d-glucosamine-specific lectin from Machaerium acutifolium and its effect on inhibition of orofacial pain via TRPV1 receptor. Arch Biochem Biophys. 2019;664:149-56.

Soares ICR, Santos SAAR, Coelho RF, Alves YA, Vieira-Neto AE, Tavares KCS. Oleanolic acid promotes orofacial antinociception in adult zebrafish (Danio rerio) through TRPV1 receptors. Chem Biol Interact. 2019;299:37-43.

Lima MDCL, de Araújo JIF, Gonçalves Mota C, Magalhães FEA, Campos AR, da Silva PT. Antinociceptive effect of the essential oil of Schinus terebinthifolius (female) leaves on adult zebrafish (Danio rerio). Zebrafish. 2020;17(2):112-9.

Silva LMRD, Lima JDSS, Magalhães FEA, Campos AR, Araújo JIF, Batista FLA. Graviola fruit bar added acerola by-product extract protects against inflammation and nociception in adult zebrafish (Danio rerio). J Med Food. 2020;23(2):173-80.

Rosland JH. The formalin test in mice: the influence of ambient temperature. Pain. 1991;45(2):211-6.

Pincedé I, Pollin B, Meert T, Plaghki L, Le Bars D. Psychophysics of a nociceptive test in the mouse: ambient temperature as a key factor for variation. PLoS One. 2012;7(5).

Philpott C, Donack CJ, Cousin MA, Pierret C. Reducing the noise in behavioral assays: sex and age in adult zebrafish locomotion. Zebrafish. 2012;9(4):191-4.

Ariyomo TO, Watt PJ. Effect of hunger level and time of day on boldness and aggression in the zebrafish Danio rerio. Fish Biol. 2015;86(6):1852-9.

Korczeniewska OA, Khan J, Tao Y, Eliav E, Benoliel R. Effects of sex and stress on trigeminal neuropathic pain-like behavior in rats. J Oral Facial Pain Headache. 2017;31(4):381-97.

Steimer T, Driscooll P. Divergent stress responses and coping styles in psycoghenetically select Roman high-(RHA) and low-(RLA) avoidance rats: behavioural, neuroendocrine and developmental aspects. Stress. 2003;6(2):87-100.

Stewart AM, Gaikwad S, Kyzar E, Kalueff AV. Understanding spatio-temporal strategies of adult zebrafish exploration in the open field test. Brain Res. 2012;1451:44-52.

Kristofco LA, Cruz LC, Haddad SP, Behra ML, Chambliss CK, Brooks CW. Age matters: developmental stage of Danio rerio larvae influences photomotor response thresholds to diazinion or diphenhydramine. Aquat Toxicol. 2016;170:344-54.

Fitzgerald JA, Kirla KT, Zinner CP, Vom Berg CM. Emergence of consistent intra-individual locomotor patterns during zebrafish development. Sci Rep. 2019;9(1):13647.

Sykes DJ, Suriyampola PS, Martins EP. Recent experience impacts social behavior in a novel context by adult zebrafish (Danio rerio). PLoS One. 2018;13(10).

de Abreu MS, Giacomici ACVV, Genario R, Dos Santos BE, Marcon L, Demin KA. The impact of housing environment color on zebrafish anxiety-like behavioral and physiological (cortisol) responses. Gen Comp Endocrinol. 2020;294:113499.

Zimmermann MJY, Nevala NE, Yoshimatsu T, Osorio D, Nilsson DE, Berens P. Zebrafish differentially process color across visual space to match natural scenes. Curr Biol.. 2018;28(13):2018-32.e5.

Meier A, Nelson R, Connaughton VP. Color processing in zebrafish retina. Front Cell Neurosci. 2018;12:327.

Wiercioch-Kuzianik K, Babel P. Color hurts. The effect of color on pain perception. Pain Med. 2019;20(10):1955-62.

Champagne DL, Hoefnagels CCM, Kloet RE, Richardson MK. Translating rodent behavioral repertoire to zebrafish (Danio rerio): relevance for stress research. Behav Brain Res. 2010;214(2):332-42.

Maximino C. Modulation of nociceptive-like behavior in zebrafish (Danio rerio) by environmental stressors. Psychol Neurosci. 2011;4(1):149-55.

Angiulli E, Pagliara V, Cioni C, Frabetti F, Pizzetti F, Alleva E, Toni M. Increase in environmental temperature affects exploratory behaviour, anxiety, and social preference in Danio rerio. Sci Rep. 2020;10(1):5385.


Submitted date:
11/09/2020

Accepted date:
12/28/2020

60873733a95395720744e383 brjp Articles

BrJP

Share this page
Page Sections