Brazilian Journal of Pain
https://brjp.org.br/article/doi/10.5935/2595-0118.20230003-en
Brazilian Journal of Pain
Artigo Original

Relationship between the Widespread Pain Index and the PainMAP software for pain sites measurement in patients with Widespread Pain

Relação entre o Índice de Dor Espalhada e o software PainMAP para medida de localização da dor em pacientes com dor espalhada

Juliana Valentim Bittencourt; Jéssica Pinto Martins do Rio; Leticia Amaral Corrêa; Felipe José Jandre dos Reis; Arthur de Sá Ferreira; Leandro Alberto Calazans Nogueira

Downloads: 0
Views: 339

Abstract

BACKGROUND AND OBJECTIVES: Identifying pain sites is essential to managing patients with Widespread Pain. Several instruments have been developed, including pain drawings, a grid system and computerized methods. However, it is not yet known whether the Widespread Pain Index matches an automated method (painMAP) for quantifying the number of pain areas. Therefore, this study aimed to identify the relationship between the Widespread Pain Index and the painMAP software to measure pain sites in participants with Widespread Pain.
METHODS: A pre-planned secondary analysis of data collected from 311 patients with musculoskeletal pain was conducted. The Widespread Pain Index and the painMAP software assessed pain sites. Spearman’s correlation coefficient investigated the correlation between the Widespread Pain Index and the painMAP software.
RESULTS: A total of 98 participants with Widespread Pain were included in this study. Most participants were female (67; 83.7%), with a mean age of 57,7±11,5 years, mean height of 1.6 (0.1) meters and mean weight of 73.2 (11.8) kilograms. The mean pain intensity was 6.7 (2.0), and the pain duration was 92.3 (96.3) months. The mean number of pain sites in the Widespread Pain Index was 10.1 (3.7), and in the painMAP software, it was 11.7 (8.8). A weak positive correlation (rho = 0.26, 95% CI 0.45 to 0.04, p = 0.022) between the Widespread Pain Index and the painMAP software was found.
CONCLUSION: The Widespread Pain Index and the painMAP software showed a weak correlation for assessing pain sites in participants with Widespread Pain.

Keywords

Chronic Pain, Fibromyalgia, Pain management, Pain measurement

Resumo

JUSTIFICATIVA E OBJETIVOS: A identificação dos locais de dor é um aspecto essencial no manejo de pacientes com Dor Espalhada. Vários instrumentos foram desenvolvidos, incluindo desenhos de dor, um sistema de grade e métodos computadorizados. No entanto, ainda não se sabe se o Índice de Dor Espalhada coincide com um método automatizado (painMAP) para quantificar o número de áreas de dor. Portanto, este estudo teve como objetivo identificar a relação entre o Índice de Dor Espalhada e o painMAP para medir as áreas doloridas em participantes com esse quadro de dor. 
MÉTODOS: Uma análise secundária pré-planejada de dados coletados de 311 pacientes com dor musculoesquelética foi realizada. O Índice de Dor Espalhada e o painMAP avaliaram as áreas de dor. O coeficiente de correlação de Spearman foi utilizado para investigar a correlação entre o Índice de Dor Espalhada e o software painMAP.
RESULTADOS: Um total de 98 participantes com Dor Espalhada foram incluídos neste estudo. A maioria dos participantes era do sexo feminino (67;83,7%), com média de idade de 57,7±11,5 anos, média de altura de 1,6 (0,1) metros e média de peso de 73,2 (11,8) quilogramas. A média de intensidade da dor foi de 6,7 (2,0) e da duração da dor de 92,3 (96,3) meses. O número médio de áreas de dor no Índice de Dor Espalhada foi de 10,1(3,7) e no software painMAP foi de 11,7 (8,8). Uma correlação positiva fraca (rho=0,26, IC de 95% 0,45-0,04, p=0,022) entre o Índice de Dor Espalhada e o painMAP foi encontrada. 
CONCLUSÃO: O Índice de Dor Espalhada e o painMAP mostraram correlação positiva fraca para avaliar as áreas de dor em participantes com dor espalhada.
Descritores: Dor Crônica, Fibromialgia, Manejo da dor, Medição da Dor.

Palavras-chave

Dor Crônica, Fibromialgia, Manejo da dor, Medição da Dor.

Referências

1 Hartvigsen J, Davidsen M, Hestbaek L, Sogaard K, Roos EM. Patterns of musculoskeletal pain in the population: A latent class analysis using a nationally representative interviewer-based survey of 4817 Danes. Eur J Pain (United Kingdom). 2013;17(3):452-60.

2 Carnes D, Parsons S, Ashby D, Breen A, Foster NE, Pincus T, Vogel S, Underwood M. Chronic musculoskeletal pain rarely presents in a single body site: results from a UK population study. Rheumatology. 2007;46(7):1168-70.

3 Treede RD, Rief W, Barke A, Aziz Q, Bennett MI, Benoliel R, Cohen M, Evers S, Finnerup NB, First MB, Giamberardino MA, Kaasa S, Kosek E, Lavand’homme P, Nicholas M, Perrot S, Scholz J, Schug S, Smith BH, Svensson P, Vlaeyen JWS, Wang SJ. A classification of chronic pain for ICD-11. Pain. 2015;156(6):1003-7.

4 Mansfield KE, Sim J, Jordan JL, Jordan KP. A systematic review and meta-analysis of the prevalence of chronic widespread pain in the general population. Pain. 2016;157(1):55-63.

5 Vanhoof J, Declerck K, Geusens P. Prevalence of rheumatic diseases in a rheumatological outpatient practice. Ann Rheum Dis. 2002;61(5):453-5.

6 Branco JC, Bannwarth B, Failde I, Abello Carbonell J, Blotman F, Spaeth M, Saraiva F, Nacci F, Thomas E, Caubère JP, Le Lay K, Taieb C, Matucci-Cerinic M. Prevalence of fibromyalgia: a survey in five European countries. Semin Arthritis Rheum. 2010;39(6):448-53

7 Assumpção A, Cavalcante AB, Capela CE, Sauer JF, Chalot SD, Pereira CA, Marques A P. Prevalence of fibromyalgia in a low socioeconomic status population. BMC Musculoskelet Disord. 2009;10:64.

8 Dragioti E, Larsson B, Bernfort L, Levin LÅ, Gerdle B. A cross-sectional study of factors associated with the number of anatomical pain sites in an actual elderly general population: results from the PainS65+ cohort. J Pain Res. 2017;10:2009-19.

9 Grimby-Ekman A, Gerdle B, Björk J, Larsson B. Comorbidities, intensity, frequency and duration of pain, daily functioning and health care seeking in local, regional, and widespread pain-a descriptive population-based survey (SwePain) Epidemiology of musculoskeletal disorders. BMC Musculoskelet Disord. 2015;16(1):1-12.

10 Kamaleri Y, Natvig B, Ihlebaek CM, Bruusgaard D. Localized or widespread musculoskeletal pain: Does it matter? Pain. 2008;138(1):41-6.

11 Barbero M, Moresi F, Leoni D, Gatti R, Egloff M, Falla D. Test-retest reliability of pain extent and pain location using a novel method for pain drawing analysis. Eur J Pain. 2015;19(8):1129-38.

12 dos Reis FJJ, de Barros e Silva V, de Lucena RN, Mendes Cardoso BA, Nogueira LC. Measuring the pain area: an intra- and inter-rater reliability study using image analysis software. Pain Pract. 2016;16(1):24-30.

13 Southerst D, Côté P, Stupar M, Stern P, Mior S. The reliability of body pain diagrams in the quantitative measurement of pain distribution and location in patients with musculoskeletal pain: a systematic review. J Manipulative Physiol Ther. 2013;36(7):450-9.

14 Ohnmeiss DD. Repeatability of pain drawings in a low back pain population. Spine. 2000;25(8):980-8.

15 Margolis RB, Chibnall JT, Tait RC. Test-retest reliability of the pain drawing instrument. Pain. 1988;33(1):49-51.

16 Beattie PF, Meyers SP, Stratford P, Millard RW, Hollenberg GM. Associations between patient report of symptoms and anatomic impairment visible on lumbar magnetic resonance imaging. Spine. 2000;25(7):819-28.

17 Triffitt PD. The repeatability of pain site diagrams. J Musculoskelet Pain. 2002;10(3):83-90.

18 Persson AL, Garametsos S, Pedersen J. Computer-aided surface estimation of pain drawings - intra- and inter-rater reliability. J Pain Res. 2011;4:135-41.

19 Corrêa LA, Bittencourt JV, Ferreira A de S, Reis FJJ dos, de Almeida RS, Nogueira LAC. The Reliability and concurrent validity of PainMAP software for automated quantification of pain drawings on body charts of patients with low back pain. Pain Pract. 2020;20(5):462-70.

20 Margolis RB, Tait RC, Krause SJ. A rating system for use with patient pain drawings. Pain. 1986;24(1):57-65.

21 Wolfe F, Clauw DJ, Fitzcharles MA, Goldenberg DL, Häuser W, Katz RL, Mease PJ, Russell AS, Russell IJ, Walitt B. 2016 Revisions to the 2010/2011 fibromyalgia diagnostic criteria. Semin Arthritis Rheum. 2016;46(3):319-29.

22 Dudeney J, Law EF, Meyyappan A, Palermo TM, Rabbitts JA. Evaluating the psychometric properties of the Widespread Pain Index and the Symptom Severity Scale in youth with painful conditions. Can J Pain. 2019;3(1):137-47.

23 Wolfe F. Pain extent and diagnosis: development and validation of the regional pain scale in 12,799 patients with rheumatic disease. J Rheumatol. 2003;30(2):369-78.

24 Salaffi F, Sarzi-Puttini P, Girolimetti R, Gasparini S, Atzeni F, Grassi W. Development and validation of the self-administered Fibromyalgia Assessment Status: a disease-specific composite measure for evaluating treatment effect. Arthritis Res Ther. 2009;11(4):1-12.

25 Wasserman RA, Brummett CM, Goesling J, Tsodikov A, Hassett AL. Characteristics of chronic pain patients who take opioids and persistently report high pain intensity. Reg Anesth Pain Med. 2014;39(1):13-7.

26 Walters JL, Baxter K, Chapman H, Jackson T, Sethuramachandran A, Couldridge M, Joshi HR, Kundra P, Liu X, Nair D, Sullivan B, Shotwell MS, Jense RJ, Kassebaum NJ, McQueen KAK. Chronic pain and associated factors in India and Nepal: a pilot study of the Vanderbilt Global Pain Survey. Anesth Analg. 2017;125(5):1616-26.

27 Brummett CM, Urquhart AG, Hassett AL, Tsodikov A, Hallstrom BR, Wood NI, Williams DA, Clauw DJ. Characteristics of fibromyalgia independently predict poorer long-term analgesic outcomes following total knee and hip arthroplasty. Arthritis Rheumatol. 2015;67(5):1386-94.

28 Bittencourt JV, Bezerra MC, Pina MR, Reis FJJ, de Sá Ferreira A, Nogueira LAC. Use of the painDETECT to discriminate musculoskeletal pain phenotypes. Arch Physiother. 2022;12(1):1-8.

29 Von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke J P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting observational studies. Bull World Health Organ. 2007;85(11):867-72.

30 Treede RD, Rief W, Barke A, Aziz Q, Bennett MI, Benoliel R, Cohen M, Evers S, Finnerup NB, First MB, Giamberardino MA, Kaasa S, Korwisi B, Kosek E, Lavand’homme P, Nicholas M, Perrot S, Scholz J, Schug S, Smith BH, Svensson P, Vlaeyen JWS, Wang SJ. Chronic pain as a symptom or a disease: the IASP Classification of Chronic Pain for the International Classification of Diseases (ICD-11). Pain. 2019;160(1):19-27.

31 Fleiss JL. The design and analysis of clinical experiments. John Wiley & Sons; 2011. 432p.

32 Motulsky HJ, Brown RE. Detecting outliers when fitting data with nonlinear regression–a new method based on robust nonlinear regression and the false discovery rate. BMC Bioinformatics. 2006;7(1):1-20.

33 Wallace MS, North J, Grigsby EJ, Kapural L, Sanapati MR, Smith SG, Willoughby C, McIntyre PJ, Cohen SP, Rosenthal RM, Ahmed S, Vallejo R, Ahadian FM, Yearwood TL, Burton AW, Frankoski EJ, Shetake J, Lin S, Hershey B, Rogers B, Mekel-Bobrov N. An Integrated Quantitative Index for Measuring Chronic Multisite Pain: The Multiple Areas of Pain (MAP) Study. Pain Med. 2018;19(7):1425-35.

34 Senkowski D, Heinz A. Chronic pain and distorted body image: implications for multisensory feedback interventions. Neurosci Biobehav Rev. 2016;69:252-9.

35 Moseley GL. Distorted body image in complex regional pain syndrome. Neurology. 2005;65(5):773.

36 Moseley GL. I can’t find it! Distorted body image and tactile dysfunction in patients with chronic back pain. Pain. 2008;140(1):239-43.

37 Lewis JS, Kersten P, McCabe CS, McPherson KM, Blake DR. Body perception disturbance: a contribution to pain in complex regional pain syndrome (CRPS). Pain. 2007;133(1-3):111-9.

38 Rzeszutek M, Oniszczenko W, Schier K, Biernat-Kałuża E, Gasik R. Sex diffierences in trauma symptoms, body image and intensity of pain in a Polish sample of patients suffering from chronic pain. Psychol Health Med. 2016;21(7):827-35.

39 Levenig CG, Kellmann M, Kleinert J, Belz J, Hesselmann T, Hasenbring MI. Body image is more negative in patients with chronic low back pain than in patients with subacute low back pain and healthy controls. Scand J Pain. 2019;19(1):147-56.

40 Viniol A, Jegan N, Leonhardt C, Brugger M, Strauch K, Barth J, Baum E, Becker A. Differences between patients with chronic widespread pain and local chronic low back pain in primary care--a comparative cross-sectional analysis. BMC Musculoskelet Disord. 2013;14:351.

41 Chiarotto A, Maxwell LJ, Ostelo RW, Boers M, Tugwell P, Terwee CB. Measurement properties of visual analogue scale, numeric rating scale, and pain severity subscale of the brief pain inventory in patients with low back pain: a systematic review. J Pain. 2019;20(3):245-63.
 


Submetido em:
05/10/2022

Aceito em:
30/01/2023

651733cba953953d07503c12 brjp Articles

BrJP

Share this page
Page Sections