Brazilian Journal of Pain
https://brjp.org.br/article/doi/10.5935/2595-0118.20230028-en
Brazilian Journal of Pain
Review Article

The cannabinoids mechanism of action: an overview

Mecanismo de ação dos canabinoides: visão geral

Mauro Araújo; Mauro Brito Almeida; Luiza Lamartine Nogueira Araújo

Downloads: 1
Views: 415

Abstract

BACKGROUND AND OBJECTIVES: The discovery of the psychoactive agent of Cannabis sativa (tetrahydrocannabinol - THC) in the second half of the 20th century originated the research that later came to identify dozens of other substances from this plant, including cannabinoids, terpenes and flavonoids. Ensuing description of their interaction sites in animals and humans, together with endogenous ligands, transport proteins as well as synthesis and degradation enzymes, revealed what came to be known as the endocannabinoid system. Several receptors participate in this system. 
CONTENTS: The first receptors to be discovered were called CB1 and CB2, both are G protein-coupled (GPCR). It is noteworthy that CB1 receptors are among the most abundant and widely distributed GPCR in the mammalian brain, with marked expression in basal ganglia, cerebellum and hippocampus, for instance; on the other hand, they are scarce in areas of the brainstem related to breathing control. In light of the multiplicity of pharmacological effects of cannabinoids, concomitant with the lack of more clarifying studies on their mechanisms of action despite the great interest in research on their therapeutic application, it is necessary to deepen the knowledge in this area. 
CONCLUSION: Considering the literature research conducted for the composition of this article, it is possible to conclude that cannabinoids have a broad spectrum of action mechanisms in the human body, and that more robust clinical studies are needed to better understand their broad therapeutic potential.

Keywords

Cannabis, Cannabinoid receptor agonists, Cannabinoid receptor antagonists, Cannabinoids, Modulators, Neurobiology

Resumo

JUSTIFICATIVA E OBJETIVOS: A descoberta do princípio psicoativo da Cannabis sativa (tetrahidrocanabinol - THC) na segunda metade do século XX inaugurou pesquisas que posteriormente vieram a identificar dezenas de outras substâncias a partir dessa planta, incluindo canabinoides, terpenos e flavonoides. A subsequente descrição dos sítios de interação dessas substâncias em animais e humanos, assim como seus ligantes endógenos, proteínas de transporte e enzimas de síntese e degradação, revelou o que veio a ser conhecido como sistema endocanabinoide. Diversos receptores participam deste sistema. 
CONTEÚDO: Os primeiros receptores a serem descobertos foram denominados CB1 e CB2, ambos são acoplados à proteína G (GPCR). É importante ressaltar que os receptores CB1 estão entre os GPCRs mais abundantes e amplamente distribuídos do encéfalo de mamíferos, com marcada expressão, por exemplo, em gânglios da base, cerebelo e hipocampo; em contrapartida, são escassos em áreas do tronco cerebral relacionadas ao controle da respiração. Diante da multiplicidade de efeitos farmacológicos dos canabinoides, concomitante à falta de estudos mais esclarecedores sobre seus mecanismos de ação apesar do grande interesse na pesquisa de sua aplicação terapêutica, é preciso aprofundar o conhecimento nessa área. 
CONCLUSÃO: Considerando as pesquisas bibliográficas realizadas para a composição deste artigo, é possível concluir que os canabinoides possuem um amplo espectro de mecanismos de ação no organismo humano, e que mais estudos clínicos robustos são necessários para que seja possível entender melhor o seu amplo potencial terapêutico.

Palavras-chave

Agonistas de receptores de canabinoides, Antagonistas de receptores de canabinoides, Cannabis, Canabinoides, Moduladores, Neurobiologia

References

1 Starowicz K, Finn D P. Cannabinoids and Pain: Sites and Mechanisms of Action. in: Advances in Pharmacology [Internet]. Elsevier; 2017 [citado 23 de junho de 2022]. p. 437–75. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S1054358917300443

2 Maccarrone M. Missing pieces to the endocannabinoid puzzle. Trends Mol Med. 2020;26(3):263-72.

3 Pertwee RG. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Δ9-tetrahydrocannabinol, cannabidiol and Δ9-tetrahydrocannabivarin: Δ9-THC, CBD and Δ9 -THCV. Br J Pharmacol. 2008;153(2):199-215.

4 Herkenham M, Lynn AB, Little MD, Johnson MR, Melvin LS, de Costa BR, Rice KC. Cannabinoid receptor localization in brain. Proc Natl Acad Sci U S A. 1990;87(5):1932-6.

5 Mackie K. Cannabinoid receptors: where they are and what they do. J Neuroendocrinol. 2008;20(s1):10-4.

6 Hu SSJ, Mackie K. Distribution of the Endocannabinoid System in the Central Nervous System. In: Pertwee RG, organizador. Endocannabinoids [Internet]. Cham: Springer International Publishing; 2015 [citado 22 de julho de 2022]. 59-93p. (Handbook of Experimental Pharmacology; vol. 231). Disponível em: http://link.springer.com/10.1007/978-3-319-20825-1_3

7 Montecucco F, Di Marzo V. At the heart of the matter: the endocannabinoid system in cardiovascular function and dysfunction. Trends Pharmacol Sci. 2012;33(6):331-40.

8 Cohen L, Neuman MG. Cannabis and the gastrointestinal tract. J Pharm Pharm Sci. 2020;23:301-13.

9 González-Mariscal I, Krzysik-Walker SM, Doyle ME, Liu QR, Cimbro R, Santa-Cruz Calvo S, Ghosh S, Cieśla Ł, Moaddel R, Carlson OD, Witek R P, O’Connell J F, Egan JM. Human CB1 receptor isoforms, present in hepatocytes and β-cells, are involved in regulating metabolism. Sci Rep. 2016;6:33302.

10 Howlett AC. International Union of Pharmacology. XXVII. Classification of Cannabinoid Receptors. Pharmacol Rev. 2002;54(2):161-202.

11 den Boon FS, Chameau P, Schaafsma-Zhao Q, van Aken W, Bari M, Oddi S, Kruse CG, Maccarrone M, Wadman WJ, Werkman TR. Excitability of prefrontal cortical pyramidal neurons is modulated by activation of intracellular type-2 cannabinoid receptors. Proc Natl Acad Sci U S A. 2012;109(9):3534-9.

12 Irving A, Abdulrazzaq G, Chan SLF, Penman J, Harvey J, Alexander SPH. Cannabinoid receptor-related orphan g protein-coupled receptors. Adv Pharmacol. 2017;80:223-47.

13 Muller C, Morales P, Reggio PH. Cannabinoid ligands targeting TRP channels. Front Mol Neurosci. 2019;11:487.

14 O’Sullivan SE. An update on PPAR activation by cannabinoids: cannabinoids and PPARs. Br J Pharmacol. 2016;173(12):1899-910.

15 Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992;258(5090):1946-9.

16 Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almog S, Martin BR, Compton DR. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol. 1995;50(1):83-90.

17 Suchopár Josef, Laštůvka Zdeněk, Mašková Simona, Alblová Miroslava, Pařízek Antonín. Endocannabinoids. Česka Gynekol. 2021;86(6):414-20.

18 Hussain Z, Uyama T, Tsuboi K, Ueda N. Mammalian enzymes responsible for the biosynthesis of N -acylethanolamines. Biochim Biophys Acta BBA. Mol Cell Biol Lipids. 2017;1862(12):1546-61.

19 Cao JK, Kaplan J, Stella N. ABHD6: its place in endocannabinoid signaling and beyond. Trends Pharmacol Sci. 2019;40(4):267-77.

20 Ligresti A, Cascio M, Marzo V. Endocannabinoid metabolic pathways and enzymes. Curr Drug Target -CNS Neurol Disord. 2005;4(6):615-23.

21 Maccarrone M, Dainese E, Oddi S. Intracellular trafficking of anandamide: new concepts for signaling. Trends Biochem Sci. 2010;35(11):601-8.

22 Oddi S, Fezza F, Pasquariello N, D’Agostino A, Catanzaro G, De Simone C, Rapino C, Finazzi-Agrò A, Maccarrone M. Molecular identification of albumin and Hsp70 as cytosolic anandamide-binding proteins. Chem Biol. 2009;16(6):624-32.

23 Kaczocha M, Glaser S T, Deutsch DG. Identification of intracellular carriers for the endocannabinoid anandamide. Proc Natl Acad Sci. 2009;106(15):6375-80.

24 Chicca A, Marazzi J, Nicolussi S, Gertsch J. Evidence for bidirectional endocannabinoid transport across cell membranes. J Biol Chem. 2012;287(41):34660-82.

25 Kano M, Ohno-Shosaku T, Hashimotodani Y, Uchigashima M, Watanabe M. Endocannabinoid-mediated control of synaptic transmission. Physiol Rev. 2009;89(1):309-80.

26 Kreitzer AC, Regehr WG. Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto purkinje cells. Neuron. 2001;29(3):717-27.

27 Ohno-Shosaku T, Kano M. Endocannabinoid-mediated retrograde modulation of synaptic transmission. Curr Opin Neurobiol. 2014;29:1-8.

28 Pertwee RG. Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol Ther. 1997;74(2):129-80.

29 Woodhams SG, Sagar DR, Burston JJ, Chapman V. The role of the endocannabinoid system in pain. Handb Exp Pharmacol. 2015;227:119-43.

30 Chevaleyre V, Takahashi KA, Castillo PE. Endocannabinoid-mediated synaptic plasticity in the CNS. Annu Rev Neurosci. 2006;29(1):37-76.

31 Herkenham M, Lynn A, Johnson M, Melvin L, de Costa B, Rice K. Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci. 1991;11(2):563-83.

32 Bouchet CA, Ingram SL. Cannabinoids in the descending pain modulatory circuit: role in inflammation. Pharmacol Ther. 2020;209:107495.

33 Hegyi Z, Kis G, Holló K, Ledent C, Antal M. Neuronal and glial localization of the cannabinoid-1 receptor in the superficial spinal dorsal horn of the rodent spinal cord. Eur J Neurosci. 2009;30(2):251-62.

34 Price TJ, Helesic G, Parghi D, Hargreaves KM, Flores CM. The neuronal distribution of cannabinoid receptor type 1 in the trigeminal ganglion of the rat. Neuroscience. 2003;120(1):155-62.

35 Veress G, Meszar Z, Muszil D, Avelino A, Matesz K, Mackie K, Nagy I. Characterisation of cannabinoid 1 receptor expression in the perikarya, and peripheral and spinal processes of primary sensory neurons. Brain Struct Funct. 2013;218(3):733-50.

36 Olianas MC, Dedoni S, Onali P. Cannabinoid CB1 and CB2 receptors differentially regulate TNF-α-induced apoptosis and LPA1-mediated pro-survival signaling in HT22 hippocampal cells. Life Sci. 2021;276:119407.

37 Leterrier C, Bonnard D, Carrel D, Rossier J, Lenkei Z. Constitutive endocytic cycle of the CB1 cannabinoid receptor. J Biol Chem. 2004;279(34):36013-21.

38 Zou S, Kumar U. Cannabinoid receptors and the endocannabinoid system: signaling and function in the central nervous system. Int J Mol Sci. 2018;19(3):833.

39 Brailoiu GC, Oprea TI, Zhao P, Abood ME, Brailoiu E. intracellular cannabinoid type 1 (CB1) receptors are activated by anandamide. J Biol Chem. 2011;286(33):29166-74.

40 Bénard G, Massa F, Puente N, Lourenço J, Bellocchio L, Soria-Gómez E, Matias I, Delamarre A, Metna-Laurent M, Cannich A, Hebert-Chatelain E, Mulle C, Ortega-Gutiérrez S, Martín-Fontecha M, Klugmann M, Guggenhuber S, Lutz B, Gertsch J, Chaouloff F, López-Rodríguez ML, Grandes P, Rossignol R, Marsicano G. Mitochondrial CB1 receptors regulate neuronal energy metabolism. Nat Neurosci. 2012;15(4):558-64.

41 Miller LK, Devi LA. The Highs and lows of cannabinoid receptor expression in disease: mechanisms and their therapeutic implications. Pharmacol Rev. 2011;63(3):461-70.

42 Atwood BK, Straiker A, Mackie K. CB2: therapeutic target-in-waiting. Prog Neuropsychopharmacol Biol Psychiatry. 2012;38(1):16-20.

43 Ye L, Cao Z, Wang W, Zhou N. New insights in cannabinoid receptor structure and signaling. Curr Mol Pharmacol. 2019;12(3):239-48.

44 Stella N. Cannabinoid and cannabinoid-like receptors in microglia, astrocytes, and astrocytomas. Glia. 2010;58(9):1017-30.

45 Pertwee RG, Howlett AC, Abood ME, Alexander S P, Di Marzo V, Elphick MR, Greasley PJ, Hansen HS, Kunos G, Mackie K, Mechoulam R, Ross RA. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol Rev. 2010;62(4):588-631.

46 Aguiar DC, Moreira FA, Terzian AL, Fogaça MV, Lisboa SF, Wotjak CT, Guimaraes FS. Modulation of defensive behavior by Transient Receptor Potential Vanilloid Type-1 (TRPV1) channels. Neurosci Biobehav Rev. 2014;46(Pt 3):418-28.

47 Boggs DL, Nguyen JD, Morgenson D, Taffe MA, Ranganathan M. Clinical and pre-clinical evidence for functional interactions of cannabidiol and Δ9-Tetrahydrocannabinol. Neuropsychopharmacology. 2018;43(1):142-54.

48 Bossong MG, Mehta MA, van Berckel BNM, Howes OD, Kahn RS, Stokes PRA. Further human evidence for striatal dopamine release induced by administration of Δ9-tetrahydrocannabinol (THC): selectivity to limbic striatum. Psychopharmacology (Berl). 2015;232(15):2723-9.

49 Parker LA, Rock EM, Limebeer CL. Regulation of nausea and vomiting by cannabinoids: cannabinoids and nausea and vomiting. Br J Pharmacol. 2011;163(7):1411-22.

50 Banister SD, Arnold JC, Connor M, Glass M, McGregor IS. Dark classics in chemical neuroscience: δ 9 -tetrahydrocannabinol. ACS Chem Neurosci. 2019;10(5):2160-75.

51 Thomas A, Baillie GL, Phillips AM, Razdan RK, Ross RA, Pertwee RG. Cannabidiol displays unexpectedly high potency as an antagonist of CB1 and CB2 receptor agonists in vitro: Cannabinoid antagonism by cannabidiol. Br J Pharmacol. 2007;150(5):613-23.

52 Zhornitsky S, Potvin S. Cannabidiol in humans--the quest for therapeutic targets. Pharmaceuticals. 2012;5(5):529-52.

53 Pacher P, Kogan NM, Mechoulam R. Beyond THC and endocannabinoids. Annu Rev Pharmacol Toxicol. 2020;60(1):637-59.

54 Ligresti A, De Petrocellis L, Di Marzo V. From phytocannabinoids to cannabinoid receptors and endocannabinoids: pleiotropic physiological and pathological roles through complex pharmacology. Physiol Rev. 2016;96(4):1593-659.

55 Izzo AA, Borrelli F, Capasso R, Di Marzo V, Mechoulam R. Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb. Trends Pharmacol Sci. 2009;30(10):515-27.

56 Nachnani R, Raup-Konsavage WM, Vrana KE. The pharmacological case for cannabigerol. J Pharmacol Exp Ther. 2021;376(2):204-12.

57 Arnsten A F. The use of α-2A adrenergic agonists for the treatment of attention-deficit/hyperactivity disorder. Expert Rev Neurother. 2010;10(10):1595-605.

58 Koltai H, Namdar D. Cannabis phytomolecule “entourage”: from domestication to medical use. Trends Plant Sci. 2020;25(10):976-84.

59 Santiago M, Sachdev S, Arnold JC, McGregor IS, Connor M. Absence of entourage: terpenoids commonly found in cannabis sativa do not modulate the functional activity of Δ 9 -THC at human CB1 and CB2 receptors. Cannabis Cannabinoid Res. 2019;4(3):165-76.

60 Gonçalves ECD, Baldasso GM, Bicca MA, Paes RS, Capasso R, Dutra RC. Terpenoids, cannabimimetic ligands, beyond the cannabis plant. Molecules. 2020;25(7):1567.

61 Russo EB. The case for the entourage effect and conventional breeding of clinical cannabis: no “strain,” no gain. Front Plant Sci. 2019;9:1969.
 


Submitted date:
08/13/2022

Accepted date:
04/24/2023

655533faa953952a04070d83 brjp Articles

BrJP

Share this page
Page Sections