Brazilian Journal of Pain
https://brjp.org.br/article/doi/10.5935/2595-0118.20230079-en
Brazilian Journal of Pain
Original Article

Low-intensity resistance training promotes a reduction of mechanical hyperalgesia and increase of muscle strength in rats submitted to the diffused chronic muscle pain model

Treinamento resistido de baixa intensidade promove redução da hiperalgesia mecânica e aumento da força muscular em ratos submetidos ao modelo de dor crônica muscular difusa

André Luiz Silva Santos; Mônica Deise dos Santos Rocha; Mateus Maciel Santos; Josimari Melo DeSantana

Downloads: 0
Views: 53

Abstract

BACKGROUND AND OBJECTIVES: Fibromyalgia syndrome (FMS) is characterized by different factors, such as chronic diffuse muscle pain (CDMP), fatigue and psycho-emotional changes. Among the animal models that mimic FMS, the acid saline model is consolidated in the development and maintenance of CDMP. Resistance training (RT) has been an effective method for reducing pain in FMS. Thus, the aim of the present study was to evaluate the effects of resistance training on nociceptive and motor responses in an animal model of chronic diffuse muscular pain.
METHODS: Twenty-four male Wistar rats were allocated into four groups: resistance training, RT control, amitriptyline (AMITRIP) and AMITRIP control; all treatment protocols lasted 4 weeks. CDMP was induced in all mice. Then, the animals were treated with low-intensity RT (40% 1 maximum repetition) and AMITRIP (10 mg/kg/day). The mechanical paw withdrawal threshold, locomotor activity and muscle strength were evaluated.
RESULTS: Animals treated with both RT and AMITRIP showed an increase in the mechanical paw withdrawal threshold (p<0.05) compared to their controls, suggesting a reduction in mechanical hyperalgesia. There was no improvement in locomotor activity in all groups (p>0.05). Animals with CDMP that underwent RT showed an increase in hindlimb muscle strength (p<0.0001) compared to the RT control group.
CONCLUSION: Low-intensity resistance training resulted in antihyperalgesic effects and improved muscle strength in animals submitted to the CDMP model.

Keywords

Exercise, Fibromyalgia, Neurosciences, Resistance training

Resumo

JUSTIFICATIVA E OBJETIVOS: A síndrome da fibromialgia (SFM) é caracterizada por diferentes fatores, como dor crônica muscular difusa (DCMD), fadiga e alterações psicoemocionais. Dentre os modelos animais que mimetizam a SFM, o modelo de salina ácida é consolidado no desenvolvimento e na manutenção da DCMD. O treinamento resistido (TR) tem sido um método eficaz para redução da dor na SFM. Assim, o objetivo do presente estudo foi avaliar os efeitos do TR na resposta nociceptiva e motora em modelo animal de dor crônica muscular difusa. 
MÉTODOS: Vinte e quatro ratos machos Wistar foram alocados em quatro grupos: treinamento resistido (TR), controle do TR, amitriptilina (AMITRIP) e controle da AMITRIP, todos os protocolos de tratamento tiveram duração de 4 semanas. A DCMD foi induzida em todos os ratos. Em seguida, os animais foram tratados com TR de baixa intensidade (40% 1 repetição máxima) e AMITRIP (10 mg/kg/dia). Foram avaliados o limiar mecânico de retirada de pata, a atividade locomotora e a força muscular. 
RESULTADOS: Animais tratados tanto com TR quanto com AMITRIP apresentaram aumento do limiar mecânico de retirada de pata (p<0,05) em relação aos seus controles, sugerindo redução da hiperalgesia mecânica. Não foi observada melhora da atividade locomotora em todos os grupos (p>0,05). Animais com DCMD que realizaram TR obtiveram aumento da força muscular dos membros posteriores (p<0,0001) em comparação ao grupo controle do TR. 
CONCLUSÃO: Treinamento resistido de baixa intensidade resultou em efeitos anti-hiperalgésicos e melhora da força muscular em animais submetidos ao modelo de DCMD. 

Palavras-chave

Exercício físico, Fibromialgia, Neurociências, Treinamento de resistência

References

1 Bradley LA. Pathophysiology of Fibromyalgia. Am J Med. dezembro de 2009;122(12):S22–30.

2 Martínez-Lavín M, Hermosillo AG, Rosas M, Soto ME. Circadian studies of autonomic nervous balance in patients with fibromyalgia: a heart rate variability analysis. Arthritis Rheum. 1998;41(11):1966-71.

3 Sluka KA, Clauw DJ. Neurobiology of fibromyalgia and chronic widespread pain. Neuroscience. 2016;338:114-29.

4 Chong YY, Ng BY. Clinical aspects and management of fibromyalgia syndrome. Ann Acad Med Singapore. 2009;38(11):967-73.

5 Gyorfi M, Rupp A, Abd-Elsayed A. Fibromyalgia pathophysiology. Biomedicines. 2022;10(12):3070.

6 Ovrom EA, Mostert KA, Khakhkhar S, McKee D P, Yang P, Her YF. A Comprehensive review of the genetic and epigenetic contributions to the development of fibromyalgia. Biomedicines. 2023;11(4):1119.

7 DeSantana JM, Sluka KA. Central mechanisms in the maintenance of chronic widespread noninflammatory muscle pain. Curr Pain Headache Rep. 2008;12(5):338-43.

8 Cohen H, Neumann L, Kotler M, Buskila D. Autonomic nervous system derangement in fibromyalgia syndrome and related disorders. 2001;3.

9 Sluka KA, Kalra A, Moore SA. Unilateral intramuscular injections of acidic saline produce a bilateral, long-lasting hyperalgesia. Muscle Nerve. 2001;24(1):37-46.

10 Yokoyama T, Lisi TL, Moore SA, Sluka KA. Muscle fatigue increases the probability of developing hyperalgesia in mice. J Pain. 2007;8(9):692-9.

11 DeSantana JM, da Cruz KM, Sluka KA. Animal models of fibromyalgia. Arthritis Res Ther. 2013;15(6):222.

12 Busch AJ, Webber SC, Richards RS, Bidonde J, Schachter CL, Schafer LA, Danyliw cA, Sawant A, Dal Bello-Haas V, Rader T, Overend TJ. Resistance exercise training for fibromyalgia. Cochrane Database Syst Rev. 2013;2013(12):CD010884.

13 Dailey DL, Frey Law LA, Vance CG, Rakel BA, Merriwether EN, Darghosian L, Golchha M, Geasland KM, Spitz R, Crofford LJ, Sluka KA. Perceived function and physical performance are associated with pain and fatigue in women with fibromyalgia. Arthritis Res Ther. 2016;16;18:68.

14 Bidonde J, Busch AJ, Schachter CL, Overend TJ, Kim SY, Góes SM, Boden C, Foulds HJ. Aerobic exercise training for adults with fibromyalgia. Cochrane Database Syst Rev. 2017;6(6):CD012700.

15 Acet G. The comparation of the effectiveness of amitriptyline and pregabalin treatment in fibromyalgia patients. North Clin Istanb [Internet]. 2017 [citado 19 de junho de 2023]; Disponível em: https://www.journalagent.com/nci/pdfs/NCI_4_2_151_159.pdf.

16 Kwiatek R. Treatment of fibromyalgia. Aust Prescr. 2017;40(5):179-83.

17 Clauw DJ. Fibromyalgia: a clinical review. JAMA. 2014;311(15):1547.

18 Bryson HM, Wilde MI. Amitriptyline: A review of its pharmacological properties and therapeutic use in chronic pain states. Drugs Aging. 1996;8(6):459-76.

19 Lawson K. Tricyclic antidepressants and fibromyalgia: what is the mechanism of action? Expert Opin Investig Drugs. 2002;11(10):1437-45.

20 Riediger C, Schuster T, Barlinn K, Maier S, Weitz J, Siepmann T. Adverse effects of antidepressants for chronic pain: a systematic review and meta-analysis. Front Neurol. 2017;8:307.

21 Sluka KA, Frey-Law L, Hoeger Bement M. Exercise-induced pain and analgesia? Underlying mechanisms and clinical translation. Pain. 2018;159(1):S91-7.

22 Lima LV, Abner TSS, Sluka KA. Does exercise increase or decrease pain? Central mechanisms underlying these two phenomena: exercise pain and analgesia. J Physiol. 2017;595(13):4141-50.

23 Da Silva Santos R, Galdino G. Endogenous systems involved in exercise-induced analgesia. J Physiol Pharmacol. 2018;69(1):3-13.

24 Sabharwal R, Rasmussen L, Sluka KA, Chapleau MW. Exercise prevents development of autonomic dysregulation and hyperalgesia in a mouse model of chronic muscle pain. Pain. 2016;157(2):387-98.

25 Leung A, Gregory NS, Allen LAH, Sluka KA. Regular physical activity prevents chronic pain by altering resident muscle macrophage phenotype and increasing interleukin-10 in mice. Pain. 2016;157(1):70-9.

26 Bement MKH, Sluka KA. Low-intensity exercise reverses chronic muscle pain in the rat in a naloxone-dependent manner. Arch Phys Med Rehabil. 2005;86(9):1736-40.

27 Bhati P, Moiz JA, Menon GR, Hussain ME. Does resistance training modulate cardiac autonomic control? A systematic review and meta-analysis. Clin Auton Res. 2019;29(1):75-103.

28 Schoenfeld BJ, Grgic J, Ogborn D, Krieger JW. Strength and hypertrophy adaptations between low- vs. high-load resistance training: a systematic review and meta-analysis. J Strength Cond Res. 2017;31(12):3508-23.

29 Burke NN, Finn D P, Roche M. Chronic administration of amitriptyline differentially alters neuropathic pain-related behaviour in the presence and absence of a depressive-like phenotype. Behav Brain Res. 2015;278:193-201.

30 Hiroki T, Suto T, Saito S, Obata H. Repeated administration of amitriptyline in neuropathic pain: modulation of the noradrenergic descending inhibitory system. Anesth Analg. 2017;125(4):1281-8.

31 Tamaki T, Uchiyama S, Nakano S. A weight-lifting exercise model for inducing hypertrophy in the hindlimb muscles of rats. Med Sci Sports Exerc. 1992 Aug;24(8):881-6.

32 Araujo AJ, Santos AC, Souza Kdos S, Aires MB, Santana-Filho VJ, Fioretto ET, Mota MM, Santos MR. Resistance training controls arterial blood pressure in rats with L-NAME- induced hypertension. Arq Bras Cardiol. 2013;100(4):339-46.

33 Fontes MT, Silva TLBT, Mota MM, Barreto AS, Rossoni LV, Santos MRV. Resistance exercise acutely enhances mesenteric artery insulin-induced relaxation in healthy rats. Life Sci. 2014;94(1):24-9.

34 Macedo AG, Krug AL, Herrera NA, Zago AS, Rush JW, Amaral SL. Low-intensity resistance training attenuates dexamethasone-induced atrophy in the flexor hallucis longus muscle. J Steroid Biochem Mol Biol. 2014;143:357-64.

35 Filippin LI, Teixeira VN, Viacava PR, Lora PS, Xavier LL, Xavier RM. Temporal development of muscle atrophy in murine model of arthritis is related to disease severity. J Cachexia Sarcopenia Muscle. 2013;4(3):231-8.

36 Cohen J. Statistical power analysis for the behavioral sciences. 2ª ed; Reprint. New York, Psychology Press; 2009.

37 Brito RG, Rasmussen LA, Sluka KA. Regular physical activity prevents development of chronic muscle pain through modulation of supraspinal opioid and serotonergic mechanisms. Pain Rep. 2017;2(5):e618.

38 Farag HM, Yunusa I, Goswami H, Sultan I, Doucette JA, Eguale T. Comparison of amitriptyline and us food and drug administration–approved treatments for fibromyalgia: a systematic review and network meta-analysis. JAMA Netw Open. 2022;5(5):e2212939.

39 Sharma NK, Ryals JM, Gajewski BJ, Wright DE. Aerobic exercise alters analgesia and neurotrophin-3 synthesis in an animal model of chronic widespread pain. Phys Ther. 2010;90(5):714-25.

40 Strickland JC, Smith MA. Animal models of resistance exercise and their application to neuroscience research. J Neurosci Methods. 2016;273:191-200.

41 Barauna VG, Batista ML Jr, Costa Rosa L F, Casarini DE, Krieger JE, Oliveira EM. Cardiovascular adaptations in rats submitted to a resistance-training model. Clin Exp Pharmacol Physiol. 2005;32(4):249-54.

42 Gabriel DA, Kamen G, Frost G. Neural adaptations to resistive exercise: mechanisms and recommendations for training practices. Sports Med. 2006;36(2):133-49.

43 Leuner B, Gould E. Structural plasticity and hippocampal function. Annu Rev Psychol. 2010;61: 111-40.
 


Submitted date:
07/07/2023

Accepted date:
09/14/2023

65a6e11ba9539579577cbc74 brjp Articles

BrJP

Share this page
Page Sections